Параллельное решение систем РМГ на графических процессорах

Копысов С.П., Новиков А.К., Сагдеева Ю.А.

Институт прикладной механики УрО РАН

Семинар: "Решение инженерных и научных задач на гибридных вычислительных системах, графические процессоры и архитектура CUDA" Институт математики и механики УрО РАН, Екатеринбург, 24 марта 2011 г.

Содержание

🚺 Метод Галёркина с разрывными базисными функциями (РМГ)

- Достоинства и недостатки РМГ
- РМГ для задачи теории упругости
- Формирование системы уравнений СРМГ
- Структура и свойства матрицы системы РМГ
- 2 Тестовая задача
- 3) Решение систем разрывного метода Галёркина
 - Прямой и итерационный методы на GPU
 - Методы решения систем РМГ
 - Предобусловловливатели
 - Аппаратное обеспечение
- 4 Вычислительные эксперименты
 - Решения систем СМГ и СРМГ
 - Форматы хранения матриц и GPU реализация
 - Решение системы несимметричного РМГ (НРМГ)
- 🕽 Выводы

Достоинства метода

- использование несогласованных сеток (составные конструкции, композиционные материалы, сопряженные задачи);
- использование комбинированных сеток (разные типы элементов);
- адаптивные схемы (локальное повышение порядка аппроксимации и/или престроение сетки);
- большой потенциал распараллеливания (декомпозиция области, параллельные адаптивные схемы).

Недостатки

- Увеличение размера конечно-элементной СЛАУ
- Необходимость выбора штрафного параметра
- Зависимость обусловленности СЛАУ от штрафного параметра

Предполагаемая область применения

- Моделирование напряженно-деформированного состояния в сложных (составных) конструкциях.
- Исследование напряженно-деформированного состояния конструкций в условиях длительной эксплуатации с накоплением повреждения материала.
- Получение эффективных характеристик композиционных материалов.
- Сопряженные задачи механики деформируемого твердого тела и газодинамики.

Формулировка РМГ по методу внутреннего штрафа для задачи теории упругости

Пусть $\tilde{\Omega}$ — разделение области Ω на M элементов K_i , таких что $\cup_{i=1}^M K_i = \tilde{\Omega}$, $K_i \cap K_j = \emptyset$. $\tilde{\Gamma}$ — совокупность внутренних ребер между элементами. Γ — внешняя граница области Ω .

Найти функцию $u^h \in U^h$ такую, что для всех $\omega^h \in W^h$

$$\int_{\tilde{\Omega}} \nabla^{s} \omega^{h} : C : \nabla^{s} u^{h} d\Omega + \theta_{DG} \int_{\tilde{\Gamma}} \langle \nabla^{s} \omega^{h} : C \rangle n_{K} \cdot \llbracket u^{h} \rrbracket d\Gamma - \int_{\tilde{\Gamma}} \llbracket \omega^{h} \rrbracket \cdot \langle C : \nabla^{s} u^{h} \rangle n_{K} d\Gamma + \int_{\tilde{\Gamma}} \llbracket \omega^{h} \rrbracket \eta \llbracket u^{h} \rrbracket d\Gamma = \int_{\tilde{\Omega}} \omega^{h} \cdot g d\Omega + \int_{\Gamma^{N}} \omega^{h} \cdot f^{N} d\Gamma, \quad (1)$$

здесь u^h — пробная функция; $\eta \geqslant C_1 h^{-\beta}$ — штраф в скачке перемещений $[\![u^h]\!]$ между элементами; $\beta \geqslant 1/(d-1)$ — параметр, зависящий от размерности задачи; θ_{DG} — параметр, определяющий метод штрафа: $\theta_{DG} = -1$ симметричный РМГ с внутренним штрафом (СРМГ); $\theta_{DG} = 1$ несимметричный РМГ с внутренним штрафом (НРМГ).

Оператор среднего
$$\langle u^h \rangle := \frac{1}{2} \left(u_1^h + u_2^h \right)$$
 на $\tilde{\Gamma}$, $\langle u^h \rangle := u^h$ на Γ .
Оператор скачка $\llbracket u^h \rrbracket := u_1^h - u_2^h$ на $\tilde{\Gamma}$, $\llbracket u^h \rrbracket := u^h$ на Γ .
Граничные условия заданы на Γ^D и Γ^N , так что $\Gamma^D \cup \Gamma^N = \Gamma$, $\Gamma^D \cap \Gamma^N = \emptyset$.

Докл. Новиков А.К. (ИПМ УрО РАН)

4 / 17

Пример формирования СЛАУ симметричного РМГ Нумерация узловых неизвестных в стандартном и разрывном методе Галёркина Матрица жесткости в симметричном разрывном методе Галёркина (СРМГ) $A = \begin{bmatrix} \int_{K_1} B_{e=1}^T C B_{e=1} d\Omega \\ \int_{K_2} B_{e=2}^T C B_{e=2} d\Omega \end{bmatrix} - \int_{\Gamma} (B_I^{<>})^T \phi_I^{\mathbb{I}} \, {}^{\mathbb{I}} d\Gamma - \int_{\Gamma} (\phi_I^{\mathbb{I}} \, {}^{\mathbb{I}})^T B_I^{<>} d\Gamma +$ (2) $+\int \left(\phi_{I}^{[]}\right)^{T}\eta\phi_{I}^{[]}d\Gamma = A_{0} - A_{d} - A_{s} + A_{r},$ Рис. 1: Вклад элементных Рис. 3: Глобальная матрица Рис. 2: Вклад интегралов по матриц A_0 границе $-A_d - A_s + A_r$ $\mathsf{CPM}\Gamma A = A_0 - A_d - A_s + A_r$ (N = 16, Nnz = 192)5 / 17

Докл. Новиков А.К. (ИПМ УрО РАН)

Параллельное решение систем

Екатеринбург, март 2011 г.

Рис. 4: Структура матрицы A для СМГ (N = 12, Nnz = 112)

Система уравненийAu = f. (3)

Рис. 5: Структура матрицы A для СРМГ (N = 16, Nnz = 192)

Докл. Новиков А.К. (ИПМ УрО РАН)

Параллельное решение систем

Тестовая задача

Тестовая задача

Область радиуса b=200, с включением радиуса a=5. Характеристики материала: $E_1=1, E_2=1, \nu_1=0.3, \nu_2=0.25$. Граничные условия:

$$|u_r|_{r=a} = a, |u_{\theta}|_{r=a} = 0.$$

Рис. 6: Расчётная сетка (1216 конечных элементов, 1305 узлов) Обусловленность систем РМГ в зависимости от N и параметра η

10⁸ 0 5.0x10³ 1.0x10⁴ 1.5x10⁴ 2.0x10⁴

• • • • • • • • • • •

Докл. Новиков А.К. (ИПМ УрО РАН)

Экономичные (гибридные) методы решения

- Прямые методы (на основе LU, LL^T , LDL^T разложений матрицы A);
- Итерационные методы крыловского типа (CG, GMRES, BiCGSTAB, ...);
- Гибридные методы:
 - Прямые методы с итерационным уточнением;
 - Итерационные методы крыловского типа с предобуславливанием на основе неполного разложения A (ILU/CG, IC(0)/CG, ...);
 - Методы декомпозиции метод дополнения Шура (прямой метод в подобластях, итерационный метод — на границе подобластей).

Сравнение прямого и итерационного методов решения на GPU

Таблица 1: Решение систем СМГ

Размер системы	Время, сек			$ u - u_{LU} $	$\ / \ u_{LU} \ $
N	LU	CG	DIAG/CG	CG	DIAG/CG
952	0.039	0.077	0.065	2.61×10^{-8}	2.76×10^{-8}
2568	0.260	0.147	0.114	2.82×10^{-8}	3.58×10^{-8}
4960	1.063	0.236	0.188	6.08×10^{-8}	4.9×10^{-8}
7640	3.380	0.306	0.243	6.44×10^{-8}	6.1×10^{-8}
100660	_	2.384	1.807	_	_

Таблица 2: Решение систем СРМГ

Размер системы	Время, сек			$\ u - u_{LU}\ / \ u_{LU}\ $	
N	LU	CG	DIAG/CG	CG	DIAG/CG
1042	0.042	4.72	2.71	2.23×10^{-9}	1.01×10^{-8}
2426	0.217	5.83	3.29	3.46×10^{-9}	1.80×10^{-8}
4758	0.922	8.56	4.80	6.28×10^{-9}	2.54×10^{-8}
7390	2.881	12.73	7.21	1.06×10^{-8}	2.85×10^{-8}
100866		147.80	80.99		—

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Для симметричных систем РМГ (СРМГ):

- метод сопряженных градиентов (CG) с предобуславливанием;
- прямые и гибридные методы на основе LL^T и LDL^T разложения A.

Для несимметричных систем (НРМГ):

- метод бисопряженных градиентов (BiCGSTAB)
- метод обобщенных минимальных невязок (GMRES)
- прямые и гибридные методы на основе LU разложения A.

Параллельный алгоритм СС с предобусловливанием

```
u, r, p, q, z \in \mathbb{R}^{N_1}, A, M^{-1} \in \mathbb{R}^{N_1 \times N_1}, N_1 = N/\sqrt{P}
i \leftarrow 0, u_i \leftarrow 0, r_i \leftarrow f
z_i \leftarrow M^{-1}r_i или решение Mz_i = r_i
p_i \leftarrow z_i
\rho_i \leftarrow (r_i, z_i) {здесь и далее (\cdot, \cdot) = \sum_P (\cdot, \cdot)^{(P)}}
while ||r_i||_2 / ||f||_2 > \varepsilon do
    q_i \leftarrow Ap_i {предполагает, что q_i \leftarrow \sum_{P_i=1}^{N_1} A^{(P_j)} p_i}
    \alpha_i \leftarrow (r_i, z_i)/(q_i, p_i)
    u_{i+1} \leftarrow u_i + \alpha_i p_i
    r_{i+1} \leftarrow r_i - \alpha_i q_i
    z_{i+1} \leftarrow M^{-1}r_{i+1} или решение Mz_{i+1} = r_{i+1}
    \rho_{i+1} \leftarrow (r_{i+1}, z_{i+1})
    \beta_{i+1} \leftarrow \rho_{i+1}/\rho_i
    p_{i+1} \leftarrow z_{i+1} + \beta_{i+1} p_i
    i \leftarrow i + 1
end while
```

Явные предобусловловливатели $M^{-1} pprox A^{-1}$

AINV — основан на неполной факторизации обратной матрицы в виде $M^{-1}=ZD^{-1}Z^T\approx A^{-1},$ где $Z\approx L^{-T}$ из $A=LDL^T.$

SPAI — получается в процессе минимизации нормы Фробениуса $min\|I - M^{-1}A\|_F < \varepsilon$, здесь ε — заданная точность.

DIAG — диагональный предобусловливатель $M^{-1} = diag(A)^{-1}$.

Неявные предобусловловливатели $M \approx A$

ILU — неполная LU($p,\tau)$ -факторизация, где p — максимальное число внедиагональных элементов в неполном LU-разложении, τ — порог отбрасывания внедиагональных элементов в предобусловливателе.

АМG — сглаживающий агрегирующий алгебраический многосеточный метод

Докл. Новиков А.К. (ИПМ УрО РАН)

Параллельное решение систем

Распараллеливание метода решения

- Параллельная реализация матрично-векторного произведения $q_i \leftarrow Ap_i$ при компактном хранении матрицы (форматы COO, CRS, ELL, BCRS2, ...).
- Использование библиотек линейной алгебры (MKL, ACML, ATLAS, GOTO, CUBLAS).
- Построение предобуславливателя.
 - Последовательное построение предобуславливателя на CPU (M_{CPU}).
 - Параллельное построение предобуславливателя на CPU (M_{MCPU}).
 - Параллельное построение предобуславливателя на GPU (M_{GPU}).
- Операции предобуславливания
 - Явное предобуславливание $z_i \leftarrow M^{-1}r_i$.
 - последовательное на CPU (M_{CPU}).
 - параллельное на CPU (M_{MCPU}).
 - параллельное предобуславливание на GPU (M_{GPU}).
 - Неявное предобуславливание $Mz_i = r_i$.
 - последовательное на CPU.
 - параллельное на CPU.
 - параллельное предобуславливание на GPU.

12 / 17

4 日 2 4 周 2 4 月 2 4 月 2 4

GeForce 470GTX

Таблица 3: Характеристики аппаратного обеспечения

Характеристика	GPU	CPU
Процессор	NVIDIA GF100 rev. A3	AMD Athlon 64 X2 5600+
Число процессоров	1	1
Число ядер	448	2
Тактовая частота,ГГц	1.22	1.00
Память индив., Мбайт	1280	1
Память ОЗУ, Мбайт	2048	2048

Докл. Новиков А.К. (ИПМ УрО РАН)

Решение систем стандартного метода Галёркина и симметричного РМГ

Таблица 4: Время построения предобуславливателя/решение системы и число итераций

	СМГ		СРМГ		
Метод	N = 2416		N =	N = 100866	
	CPU	GPU	CPU	GPU	GPU
CG	0.36	0.04	130.08	10.97	147.8
	(169)	(171)	(35901)	(35901)	(74053)
DIAG/CG	0.12	0.03	50.29	4.31	80.9911
	(149)	(150)	(13416)	(13416)	(39697)
AINV/CG	0.16/0.144		6.02/82.5		4.54/93.33
	(81)		(28583)		(26225)
SPAI/CG	0.01/0.06		0.06/—		
	(99)		$(> 10^5)$		
AMG/CG	0.02/0.09	0.02/0.03	0.05/57.72	0.05/7.84	0.24/80.8
	(30)	(30)	(5529)	(5529)	(22057)
$ILU(p,\tau)/CG$	$(20, 10^{-6})$	$(20, 10^{-6})$	$(80, 10^{-8})$	$(80, 10^{-8})$	
	0.59/0.4	0.56/0.56	15.6/3.18	16.45/2.18	
	(46)	(46)	(17)	(17)	

< 同

(E)

э

Форматы сжатого хранения матриц

- СОО (Координатный формат) хранятся упорядоченные по строкам значения $a_{ij} \neq 0$ и их строчные *i* и столбцовые индексы *j*;
- CRS (Сжатый строчный формат) вместо строчных индексов хранятся указатели на начальные позиции каждой строки в списках a_{ij} ≠ 0 и j);
- BCRS2 (Блочный вариант CRS) используются блоки 2×2 ;
- ELL формат с постоянным числом ненулевых элементов в строке;
- НҮВ (Гибридный) комбинация ELL и формата СОО.

Формат	C	G	DIAG/CG	
матрицы	CPU	GPU	CPU	GPU
CRS	130.08	28.27	50.29	11.08
BCRS2		15.82		6.51
C00		10.97		4.31
HYB		6.99		3.13
ELL		6.41		2.93

Таблица 5: Время решения при различных форматах хранения матриц

Докл. Новиков А.К. (ИПМ УрО РАН)

Таблица 6: Решение несимметричной системы РМГ, N = 9346

Метод	CPU	GPU
$ILU(45, 10^{-8})/$	7.62/5.48	8.24/3.95
GMRES	(50)	(50)
$ILU(45, 10^{-8})/$	7.62/4.65	8.24/3.31
BICGSTAB	(22)	(22)

- 2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Выводы

- Для эффективного решения систем РМГ на графических ускорителях процесс построения предобусловливателя должен быть распараллелен.
- В итерационном процессе, выполняемом на GPU предпочтительно применение явных предобусловливателей.
- Необходимым условием для получения максимального ускорения вычислений на GPU является соответствие формата хранения матриц архитектуре графического ускорителя.
- При увеличении размерности решаемых систем уравнений предполагается рассмотрение вариантов: multiGPU, multiGPU/multiCPU.

Докл. Новиков А.К. (ИПМ УрО РАН)

くほし くきし くきし